■ Faculty of Science  Department of Applied Mathematics,  Professor 

SENBA Takasi 

  Male

【 Research Field 】
  • Basic analysis
 
Results  :  14  
Publication (2)
  1. Applied Analysis, Mathematical Methods in Natural Science 2nd Edition
    • Takasi Senba, Takashi Suzuki   ,  Imperial College Press  ,  2011/4
  2. Applied Analysis, Mathematical Methods in Natural Science
    • Takasi Senba, Takashi Suzuki   ,  Imperial College Press  ,  2004/6
Academic Paper ( 10)
  1. Application of an Adams type inequality to a two-chemical substances chemotaxis system
    • Kentaro Fujie, Takasi Senba  Journal of Differential Equations  ,  263/,88-148  ,  2017/7
  2. Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity
    • K. Fujie, T. Senba  Nonlinearity  ,  29/,2417-2450  ,  2016/7
  3. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivitiy
    • Kentarou Fujie, Takasi Senba,  Discrete and Continuous Dynamical Systems - Series B  ,  21/1,81-102  ,  2016/1
  4. On a weak attractor of a class of PDEs with degenerate diffusion and chemotaxis
    • M. Efendiev, A. Zhigun, T. Senba,  Journal of the Mathematical Society of Japan  ,  66/4,1133-1153  ,  2014
  5. Stability of stationary solutions and existence of oscillationg solutions to a chemotaxis system in high dimensional spaces
    • Takasi Senba  Funkcialaj Ekvacioj  ,  56/3,339-378  ,  2013/12
  6. Bounded and unbounded oscillating solutions to a parabolic-elliptic system in two dimensional
    • Y. Naito, T. Senba,  Communications on Pure Applied Analysis  ,  12/5,1861-1880  ,  2013/9
  7. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains
    • Y. Naito, T. Senba,  Discrete and Continuous Dynamical System - A  ,  32/10,3691-3713  ,  2012/10
  8. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model
    • Yuki Naito, Takasi Senba,  AIMS Proceedings: 8th AIMS International conference on Dynamical systems  ,  2011
  9. On the well posedness of a class of PDEs including porous medium and chemotaxis effect
    • M. Efendiev, T. Senba,  Advances in Differential Equations  ,  16/9,937-954  ,  2011/9
  10. A sufficient condition for type I blowup in a parabolic-elliptic system
    • N. Mizoguchi, T. Senba,  , Journal of Differential Equations  ,  250/,182-203  ,  2011/1
Presentation (2)
  1. Behavior of solutions to a chemotaxis system with general sensitivity functions
    • Takasi Senba   ,  2017/6
  2. Global existence and boundedness of solutions to chemotaxis systems with general sensitivity
    • Takasi Senba   ,  7th Euro-Japanese Workshop on Blow-up  ,  2016/9

page top